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It is shown that the variational principle for the grand potential of a nonuniform 
fluid as a functional of the singlet density yields the potential distribution theory 
for the equilibrium density. We derive the explicit form that the functional takes 
for a system of hard rods, and propose an approximate one for hard spheres. 
Attractive interactions are also considered in mean-field approximation. In all 
cases the pair direct correlation function of the nonuniform system is obtained 
and the density gradient expansion of the free energy is investigated. 
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form fluids. 

1, INTRODUCTION 

M a n y  recent studies on the structure and thermodynamics  of nonuni fo rm 
systems, involving applications to f luid-f luid interfaces in pure (1'2) and  
mul t ic0mponent  fluids, (3'4) fluid-to-wall density profiles, (5) solidification, (6) 
nucleat ion (7~ and spinodal decomposit ion,  (8) etc., have been developed 
along one of two theoretical frameworks. One of these is the density 
functional  formalism, (9) in which a variational principle for the grand  
potential determines the equilibrium number  density or singlet distribution 
function. The second approach  is that  of the potential distribution the- 
ory, (2) which provides an expression relating the the rmodynamic  activity of 
the system to the equilibrium density. This expression follows f rom the 
considerat ion of a canonical  average involving the difference in configura- 
tional energy that arises when a molecule is added  at x to a system of N 
other molecules. 
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Although it is to be expected that the potential distribution theory 
expressions must follow from the variational principle for the grand poten- 
tial, no explicit link between the two formalisms has been presented. An 
exception is the case of the well-studied van der Waals, Cahn-Hilliard 
approximation (1,9) for the liquid-vapor interface, where the equations that 
determine the density profile and the surface tension are readily obtained 
upon imposition of slowly varying conditions on either approach. (2'9) Here, 
we consider an expression for the grand potential functional f~[fx], where fN 
is a probability density in the N-particle phase space (or equivalently, a[p], 
where 0 is the singlet distribution function), from which one obtains, upon 
variation, the potential distribution formula. Subsequently, we exploit this 
expression to derive the explicit form of ~[O] for a system of hard rods, and 
propose an approximate one for the case of hard disks and spheres. We 
also consider attractive interactions superimposed to the infinite repulsions 
and treat them within the mean-field approximation. In all cases we derive 
the potential distribution formulas and obtain the pair direct correlation 
function c(x, y; [0]). 

The most important feature in the expressions obtained for f~[0], or 
equivalently, the Helmoltz free energy ~[O], is their nonlinear and nonlocal 
character. Both properties, relevant when far from slowly varying condi- 
tions, are of utmost importance in the description of the nonuniformities 
encountered in fluid-fluid interfaces away from the critical tempera- 
ture, (2'9) as well as nucleation and spinodal decomposition in its intermedi- 
ate and later stages. (7) To date, O) all treatments of these problems have 
employed a square-gradient van der Waals, Cahn-Hilliard expression for 
this functional, which is applicable only in the slowly varying regime for p, 
The nonlocality that we found suggests that the inclusion of higher terms in 
a gradient expansion might not be the appropriate way of improving the 
existing treatments. Furthermore, some nonuniform systems, as repre- 
sented, for example, by a hard-sphere fluid against a hard wall, have no 
slowly varying density regime. We hope that the approach presented here 
to obtain free energy functionals opens new opportunities to further prog- 
ress in some of these problems. 

2. THE FREE ENERGY FUNCTIONAL FOR A NONUNIFORM FLUID 

The most direct approach to the fundamental variational principle for 
the grand potential f~ for a nonuniform classical system is that recently 
adopted by Evans. O) This approach, which is analogous to that employed 
by Mermin (l~ and by Hohenberg and Kohn (Ll) for the inhomogeneous 
electron gas, is more naturally expressed in the grand canonical ensemble 
language. Here, we resume the main argument, but, because of our pur- 
poses, choose instead to work with a canonical ensemble. 
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Thus, we first write the Helmholtz free energy functional as the 
average 

N[ fN] = tr( fu[ HN + f l - - ' ln  fN]) (1) 

where fu  is a probability density in the phase space for a system of N 
classical particles in a volume V, tr is the classical trace 

tr = (h3NN!)-lfdpNdxN (2) 

where _pN and x u denote momentum and position variables, respectively; 
B = 1/kBT,  where ke is Boltzmann's constant and T the temperature. H N 
is the Hamiltonian 

ON = KN"~- WN = KN"t- UN-t- V u (3) 

where K u is the kinetic energy and W u the interaction term. W N is in turn 
divided into a particle interaction term U N and an external field term V u. 
Equation (1) merely furnishes the definition of the free energy as an 
internal energy plus a temperature-entropy term. ~[fu] has the property 
that for the equilibrium probability density 

f~r q = QN ' exp ( -- ~H u ) (4) 

where QN is the partition function 

QN = tr [ exp ( - f lH u ) ] (5) 

we obtain the usual relation 

oy[f}q] = _ f l - l l n  QN (6) 

Also, ~ has the minimal property 

~[ fu] > ~-[f~q], fu  =/= f[v q (7) 

It can also be proved (9~ "that for a Hamiltonian with given interactions 

U N ~-- UN(X 1 . . . . .  XN) (8a) 

and 
N 

VN = 2 V(Xi) (8b) 
i=1 

the probability density fN is a unique functional of the singlet distribution 
function 

p(x) = tr fN ~., 8 (X -- X 3 (9) 
[ i=1 

and therefore ~[fN] is also a unique functional of p(x), so that we denote it 
also by ~ 
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In establishing these results (9) it is impor tant  to note that, for a fixed 
interaction UN, a given probabili ty density fs  is the equilibrium density for 
an external potential  V~,; i.e., there exists a V~ such that fN is the 
equilibrium distribution for that problem. Thus we write fN as 

fN = (ANZN )-Iexp[--fl(KN + UN + V;v ) ]  (10) 

where A = [h/2~rmB -113/2 is the de Broglie thermal length, and Z N is the 
configurational integral 

ZN= f dxNexp[--fl(UN + V~v ) ]  (11) 

Adopting from here on the above expression forfN, 2 the trace in Eq. (1) can 
be partially per formed to yield 

=fdxo(x)Iv(x)-v'(x)l- e-' --YV., ) (t2) 

and, p(x) can be seen to be given by 

o(x) = UZ#' f dx e x p [ -  fi(U N + V h )]  (13) 

It is f rom Eq. (12) for if[0] that we shall obtain the formula of the 
potential  distribution theory. To  this purpose, we consider the variation on 
the grand potential  3 

a = ff - #N (14) 

that corresponds to adding a particle to a system of other N identical 
particles, with the constraint that the chemical  potential/~ is kept constant.  
This variation is 

[ (N+ 1)ZN ' 
8 a =  f +  -'ln - (15) 

At equilibrium, and in the thermodynamic  limit, d f~ = 0 implies the famil- 
iar relation 

I (  N + 1)z~q ] /3~ = In z ~ q  (16) 

2ff depends on V u through H N and fN. This can be made explicit by writing ff[fN[VN] I VN]. 
The statement above Eq. (10) can be expressed therefore by writing ff[fN[VN]I VN] 
= ey[f}q[ V)]] VN], or alternatively, ~-[0(x) f VN], where O(x) = tr (f}q[ V)]~/N= 18(x - x~)). 

3Strictly speaking, the grand potential defined by Eq. (14) is not the same as that obtained, as 
is more often the case, from a grand canonical ensemble approach. The two of them however, 
become indistinguishable in the thermodynamic limit, just as for the more familiar uniform 
systems. 
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where/Lc is the configurational chemical potential 

/~c ~/~ - f i - l l n A  

Now, from Eq. (13) we can rewrite the definition of peq(x) as 

0~ - 

where 

(N + 1)Z~ q f dxNe-r162 + v~ ) 

z2r f axUe-e(u~+v.) 
(N + 1)Z~ q 

Z~v q ' ( e-e~'(")) w 

(17) 

(18) 

and 

~ = - f l - ' N l n A  

~[p] = f d x p ( v - v ' ) -  fl-'ln(-~1. ) (23b) 

leads to the result 

6p(x) eq = in [ p~q(x) ] < e (24) 

Potential distribution theory and the variational principle on the grand 
potential functional coincide, as they should, in indicating, as seen from 
Eqs. (20) and (21), that the equilibrium singlet density is that which ensures 
the uniformity of the chemical potential in the nonuniform fluid. What 

(23a) 

with 

#(x)  = w ~ + , ( x ,  . . . . .  x > x )  - WN(x, . . . .  , x~) (19) 

is the difference in potential energy that arises when the (N + 1)th particle 
is added at x. This, together with Eq. (16), yields the potential distribution 
formula <2) 

peq(x) = e B~ < e -  Br U (20) 

This equation relates the equilibrium singlet distribution to the activity 
X---exp(fi/~r and constitutes a functional relation that determines peq(x). 
Furthermore, since at equilibrium one has 

8~ eq-- ~6~ eq-- 
~p(x) 8p(x)  ~ = 0 (21)  

the consideration Of kinetic and configurational contributions to ~[p], i.e., 

g [P ]  = gk[O] + ~ [ P ]  (22) 
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must be emphasized is that in exhibiting the relationship between the two 
formalisms we have provided Eq. (21) with an explicit prescription for 
8~/60(r) in terms of the interaction potential function. One such prescrip- 
tion is required if the variational Eq. (21) is to be employed, either in the 
evaluation of the equilibrium density or in the determination of the free 
energy functional itself by functional integration. This way of constructing 
the free energy functional would be of value in the application of some 
statistical mechanical theories to relaxation phenomena such as nucleation, 
spinodal decomposition, and kinetics of phase change. (7'8) Finally, it must 
be noted that the potential distribution representation for 8~/Sp(r) given 
by Eq. (24) is only valid for systems in the thermodynamic limit. 

3. SOME SPECIFIC EXAMPLES 

We shall now proceed to illustrate how the free energy functional can 
be constructed from its definition, Eq. (12), for some specific model 
systems. As mentioned above, one could obtain ~ by functional integration 
of Eq. (24) provided the exact potential distribution formula for the system 
under consideration is known. In case only an approximate expression for 
Eq. (24) is available it is possible that this is not integrable. In any case we 
consider it preferable to follow the inverse procedure. 

3.1. One-Dimensional Hard-Core Systems 

In order to evaluate the configurational integral Z N for a system of 
hard rods, we look first at its discrete space analogs. Let us consider a 
linear lattice gas of hard core particles of "length" rn, i.e., a particle 
excludes 2m + 1 contiguous sites from occupation by other particles. We 
denote by 0s the occupation number or probability of finding a particle at 
s. For the uniform system O~ = P = N/M  for all s, where M is the number 
of sites in the lattice. 

The simplest situation is that of the uniform ideal lattice gas (rn = 0 
and vs = v'), for which we can write immediately 

-- I N 1 [~3p(1 __p)l--p]M ZNle-flNv" Nt pN(1 - -  D)M- N! (25) 

In the equation above ZN 1 exp(-fiNv) represents the probability for a 
configuration of the fluid with uniform occupation number p. This proba- 
bility is equal, after the correction factorial term for indistinguishable 
particles, to the probability of having the N particles in the lattice, p w, 
multiplied by the probability of having M - N empty sites, (1 - p)M-N, 
since multiple occupation is not allowed. If we now let the system be 
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nonuniform, due to a site dependent external field v~, the M factors in the 
last equality above are no longer equal and the probability for a configura- 
tion with number density 0, is now given by 

M-1 
Zff lexp - f l  p, Vs = ~.v I I  02( 1 - 0 , )  1-~ (26) 

s=0 

When the range of the hard core is extended the occupation of each 
site is no longer independent from that of its neighboring sites, but we can 
still write the probability of an allowed configuration as a site product as in 
Eq. (26). This product is m a d e b y  "building up" the configuration taking as 
a starting point one end of the lattice and placing the particles in such a 
way that there are no overlaps of hard cores with those previously placed. 
For first neighbor exclusion (m = 1) we obtain (proceeding from s = M - 1 

to s = O) 

M-- 1 ~, 
( ~s t) 1 =I-IO Ps" (1 __Ps_1 __ps) l-ps_,-p, ZN-1exp - f i  p~v,  = ~ .  s= ( 1 - - P s _ l )  1-p'  ' 

(27) 

where the factor p~ - Ps- l) -(1 -o,-0 above is the probability of finding a 
particle at s conditioned by the site s - l being empty, whereas the second 
factor, (1 - Ps-1 - 0,)  l -~  '-P" is the probability of finding both sites s and 
s -  1 empty. (6) The other allowed possibility for a configuration, around 
site s, that of finding site s empty and site s - 1 occupied by a particle, is 
taken into account by the next factor in Eq. (27) (that for site s -  1). In 
general, the result for mth neighbor exclusion is 

M--1 Ps 

ZN- lexp  - - f l  Osn = ~.~ = (1 -- tm_l) l- t"- '  

where 

t in(S) = ~ 0 , - ,  (29) 
l=0 

is the probability of finding the set of m contiguous sites (s, s - 1 . . . . .  s - 
m} empty. (6) The free energy functional for this system is therefore given 
by 

/3~ = Z (0,[ fly, + lnA- 'o~ ] + (1 - tm)ln(1 - tin) 
S 

- (1 - tm_,)ln(1 - tm_l)  ) (30) 



520 Robledo and Varea 

whereas the equilibrium density profile is determined from 

/38360, eq = In p, - / 3  (/~c - vs) - In 

• [1-tm(s+k)] ~I [1-tm-I(s+k)l =0 (31) 
k=0 k=0 

Equation (31) coincides, as it must, with that derived for this system 
directly from potential distribution theory. (6) 

To obtain ~-[p] for a system of hard rods we consider the limiting form 
of Eq. (30) for large m. Since 

_~IN! ---> I ~ ( ~ e  )o,, large m (32a) 

and 

[ p, ](,-t~/os 
1 1 --- t m ~ e, large m 

we have, from Eq. (28) that 

ZNIeXp(--/3Yas Psi)s)' = MrIl[ N(lP~- qjp' 

(32b) 

Therefore, for the continuum-space system of hard rods of length o, we 
obtain 

fl~[o]= f dxo(x)(lnA-lo(x) - 1+  flv(x)-ln[1- t(x)l } (34) 

where 

t(x)=s x_o dyo(y) 
Functional differentiation of Eq. (34) yields the following relation for the 
equilibrium density profile: 

/3 ~t~a eq = In o (x )  - / 3 [  t~c - v ( x ) ]  - l n [ 1  - t(x)] 

+fxX+~ 1 _O---(~-~y)-0 (35) 

Equation (35) was originally derived by Percus (~2) from the grand partition 
function for this system, and was later obtained (6~ from potential distribu- 
tion theory. 

As can be observed, the most relevant properties of the exact free 
energy functionals derived above are 'their nonlinear and nonlocal depen- 

(33) 
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dence on the singlet density. In contrast with this situation, a truncated 
gradient expansion, such as that of Cahn and Hilliard and van der Waals, 
yields a functional that, although possibly nonlinear, is local in character. 
For illustrative purposes we show the gradient expansion of Eq. (34). The 
term ln(1 - t) in Eq. (34) can be expanded and integrated to yield 

1 A - l ~  
fl~[O] = f d x p ( x )  n 1 - oO(x) 1 + fly(x) 

+ 2 P ~ (36t 

where p(q) denotes the qth derivative of p. From the first terms of Eq. (36) 
we have 

; 1 B [o] = dx0(x )  in 1 - oo(x) 

+ l f a x  4 - 3 o p ( x )  
[1 aO(x)] 2 [p(i)(x/]2+ . . .  (37) 

where the terms O(0 (1)) and O(10 (3)) do not appear since they are exact 
differentials of O and hence only contribute by a constant to oy. The factor 
to the square gradient can be easily seen to be the second moment of the 
direct correlation function of the uniform system with the uniform Ou 
replaced by O(x). The series in Eq. (36) converges uniformly for 0 < oO(x) 
<1.  

3.2. Hard-Disk and Hard-Sphere Systems 

When considering higher-dimensional hard-core lattice gases we notice 
that it is no longer possible, unless one introduces an approximation, to 
express the configurational integral as a site product where each factor only 
involves a number of neighboring sites given by the range of the interac- 
tions. This is because in dimensions higher than 1 a hard-core particle, or 
an empty volume of equal extent, does not uncouple the space into separate 
regions as it does in one dimension. 

Here we propose an approximate form for Z~v for a dimension d larger 
than 1. This is obtained by first writing Eq. (33) in a symmetrical form. We 
recall that the allowed configurations leading to Eq. (33) were "built" by 
performing the site product from large to small values of s. An alternative 
expression for Z N is obtained by proceeding from small to large values of s. 
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Combining these two expressions one has, for 2nth neighbor exclusion, n 
being a large number, the symmetrical form 

Z~7 l exp ( - [3  ~s p,v:) = M1- i '  --~ )o, ,=0 ( (1 -- %)-(o, ~176 n large (38) 

where 
Y /  

%(s) = 2 O,+z (39) 
l= --n 

Equation (38) suggests, for a 2nth neighbor exclusion lattice gas with d > t, 
the expression 

II(~ Z f f ' e x p ( -  fl ~s OsV'~) = s \ N ) ~ - "G)-x-'z~~ n large (40) 

where 
%(s) --- 2 Ps+, (41) 

I=0 
where s is the position vector for a site in the lattice, g is a unit vector in the 
direction of an nth neighbor of site s, k is the number  of such neighbors, 
and the sum in Eq. (41) is over all sites around s up to its nth neighbors. 
Proceeding as before, we find that in the continuum-space limit the free 
energy functional is given by 

/3qp] = f d x o ( x ) { l n A - ' o ( x ) -  1 +/3v(x) - v-'fdx'8 
x (ix - x q -  ~ )o(x')lnE l - , (x)]  } (42) 

where 

= f dx' A(x')p(x + T(X) X') (43) 

1, [xl < 0/2  
A(x) = 0, Ixl > ~/2 (44) 

o is the diameter of a hard sphere or disk and V is their volume or area. 
Equation (42) reduces to the exact result, Eq. (34) in one dimension. 
Functional differentiation of Eq. (42) leads to 

/3 ~-~aa eq = ln0(x) -- 13[/~c -- v(x)] 

- v - ' f  dx' 8 ( I x  - x '  l - a / 2 ) I n  [ 1 - ~ ' ( x ) ]  

+ v-lf  dx'f dx" ~(Ix"l- a / 2 ) a ( x  - x')p(x" + X) 

• [ 1 - ~'(x) ] -1 = 0 (45) 
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and 

6 c(x,y)  ~: ~p(y) ( lnp(x)  - ]3[/~c - v(x)]  } 

= V - ' f  dx '6( lx  - x ' [ -  o/2)A(y - x ')[1 - ~-(x')] - t  

x v - ~ f  dx'8(ly - x ' l -  o /2)A(x - x ')[1 - r (x ' ) ]  -~ 

- v - I f  d,, ' f  dx"  (Ix"l- o / 2 ) A ( x -  x') 

X A(y - x')p(x' + x")[  1 + ~'(x')] -2 (46) 

Equation (45) determines the equilibrium singlet density for a given exter- 
nal potential v(x), whereas Eq. (46) yields the pair direct correlation 
function c(x, y) for the nonuniform fluid in terms of 0(x). We observe that 
c(x,y), as given by the above expression, vanishes whenever I x -  Yl > o, 
and thus it has the range of the hard-core interaction. Both Eqs. (45) and 
(46) reduce, of course, to the exact results (6'~2) for the hard-rod system. 

To gauge the approximation involved in our proposed expressions for 
d > 1, it is of interest to reduce Eq. (46) to the uniform fluid situation. In 
this case we obtain for d = 2 

c(s) = - (1 - AO)-12~r- ' cos-  i o - ' s  

- A p ( 1 -  A#)-z2~r- l [cos  ' a - ' s -  a-2s(a 2 -  s2)'/2],s < o (47a) 

and for d = 3 

c(s) = - ( 1  - Vp)-~(1 - a - ' s )  

- VO(1 - Vp)-2(1 - 6o-~s + 32a-3s3), s < a (47b) 

where s = ]x - y] and A and V are, respectively, the area and volume of a 
disk and a sphere. The s-dependent terms in brackets in Eq. (47a) consti- 
tute the arc and the area of intersection of two disks whose centers are 
separated by the distance s. Those in Eq. (47b) are the corresponding area 
and volume of intersection of two spheres. The cubic in s in this equation 
(with no quadratic term) has the same form as that obtained from the 
scaled-particle and the Percus-Yevick theories. This is because the volume 
of intersection of two spheres is a relevant quantity in all three approxima- 
tions. We note that the density dependence in Eqs. (47) is like that of the 
one-dimensional system, and reflects the one-dimensional nature of our 
approximation. A better theory should yield higher inverse powers of 
(1 -  VO). (13) 
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3.3. Attractive Interactions 

We consider now attractive pair interactions superimposed to the 
hard-core repulsions, i.e., interactions of the form 

Ix-yt  < o 
~(I x - Yl) -- ~Jattr(I X _ Yl), Ix - Yl > o 

(48) 

The additional term to the grand potential, s and its contributions to 
the potential distribution formula and to the direct correlation function, 
that are due to the attractive tail t~a t t r ,  a r e  easily obtained in mean-field 
approximation. These are 

= f dx P(X)Veff(X) 

.~_ ! ( dx C dx '  p(X)l~attr([X- xt t )p(x  l) 
2 2 3 

~attr 
go(r) 

and 

-- ; dx  P(X)~Jattr(I x -- yl) 

(494) 

(49b) 

g 2~attr 
8p(y)gp(z) - ~Ja t t r ( IZ  - Yl) (49c) 

Thus, for the direct correlation function we have the usual mean-field result 

Cattr([ z - Y[) = - flqJ~tt~([ z - Yl) (50) 

The nonlocality of ~attr is responsible for the fact that its contribution to 
c(z,y) is not a deltalike term like in the square-gradient approximation. (9) 
This is an important difference between the exact (mean-field, in this case) 
and the approximate van der Waals, Cahn-Hilliard, and related theories. 
Since stability criteria are often based on the behavior of g2~2/gpgp one 
may obtain qualitatively different predictions from both expressions. This 
may happen, for example, in the study of the response of the liquid-vapor 
interface to capillary wave fluctuations. (9'14) It is interesting to note, as 
shown in Ref. 4, that the equations for the density profiles that correspond 
to these two approaches are essentially the same near the critical point. 

It is instructive to obtain the gradient expansion of ~ a t t r "  For slovely 
varying conditions, when p (x )~  p. + gO(x), SO(X) small, we have 

~attr " "  -- O~Pu 2 -[- Pu; dx f dx' t~attr(lX -- x tbgp (x / )  

where 

1 y dX~attr(iXl) (52) 
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The reference uniform density O. can be chosen to make the term linear in 
8 0  vanish, and by introducing the Fourier components 

= _f dxff~ttT(lxl)exp(i q �9 x) (53) ~q 
and 

= ( dx 8p(x)exp (iq. x) (54) Pq 
d 

we have 

~attr ~ -- O/P 2 + (2 V ) - 1 E  ~qpqp _q 
q 

Considering the moment expansion of ~q, 

~/q = a o + a z q  2 + a 4 q  4 + �9 . . 

where 

_ I f dx Ixl2"@,ttr(lX[) a2n 2n! 

we finally obtain 

(55) 

(56) 

(57) 

aattr ~ -- olp 2 -]- ao f d x [  8p(x ) ]2  

+ a fdxlVo(x)12+ a4ydx lVp(x )14+  . . .  (58) 

We note that the series above diverges if the interaction ~battr decays like a 
power law. This is the case, for example, of the Lennard-Jones potential. 
Thus, to have a meaningful density gradient expansion the interaction must 
decay at least as rapidly as an exponential. 
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